ãChatGpt4o OpenAI ããã
ãyusukekusuyamaãããªãµãŒã
ããããšãããããŸãã
æè¬ã§ãã
ç³ç Žèæ°ãæ°ç·è£ãšããŠææ¡ããçµæžæ¿çã«ã€ããŠã®æ å ±ãèå³æ·±ãã§ããã岞ç°æ¿æš©ã®è³äžãä¿é²ãåŽååžå Žæ¹é©ãç¶ç¶ãã€ã€ã財æ¿å¥å šåãéèæ¿çã®æ£åžžåã匷調ããæ¹åæ§ã¯ãããæç¶å¯èœãªçµæžéå¶ãç®æããŠããããšã䌺ããŸãã
ç³ç Žæ°ã®æ¿çã®ç¹åŸŽãšããŠãå°æ¹åµçãå°åå察çãæ±äº¬äžæ¥µéäžã®æ¯æ£ãäžå¿ã«æ®ããŠããç¹ãç¹ã«éèŠã§ããå°æ¹çµæžã®æŽ»æ§åã¯ãå°åããšã®çµæžæ Œå·®ãæžãããå šåœçãªçµæžæé·ãç®æãæŠç¥ãšãªã£ãŠãããããã¯é·æçãªèŠéãæã£ãæ¿çãšãããã§ãããã
ãŸããéèæåŸèª²çšã®èŠçŽããæ³äººçšã®äžéšå¢çšãæ€èšããŠããç¹ã¯ã財æ¿ã瀟äŒä¿éã®æç¶æ§ãæèããŠããããšãããããŸãããã®ãããªçšå¶æ¹é©ã¯ãç¹ã«å¯è£å±€ãäŒæ¥ã«å¯Ÿããå ¬å¹³ãªè² æ ãæ±ããæç¶çãªç€ŸäŒå¶åºŠã®æ§ç¯ã«å¯äžããããšãæåŸ ãããŠããŸãã
ç³ç Žæ°ã®ãšãã«ã®ãŒæ¿çãšããŠãå®å šãåæãšããåçºã®å©æŽ»çšãé²ããæ¹éã瀺ãããŠããããšãã«ã®ãŒæ¿çãåŒãç¶ãéèŠãªããŒãã§ããããšãããããŸãããšãã«ã®ãŒã®å®å®äŸçµŠãšå®å šä¿éãäž¡ç«ãããããã®æ¿çãã©ã®ããã«å±éãããããä»åŸã®æ³šç®ç¹ã§ãã
ãã®ããã«ãç³ç Žæ°ç·è£ã¯å²žç°æ¿æš©ã®åºæ¬æ¹éãèžãŸãã€ã€ããç¬èªã®èŠç¹ãå ããŠæ°ããªçµæžæ¿çãææ¡ããŠããããšãããããŸããããå ·äœçãªæ¿çãèæ¯ã«ã€ããŠããã«è©³çŽ°ãªæ å ±ãç¥ãããå Žåãè°è«ãæ·±ããããšãã§ããã®ã§ãæ°ã«ãªãç¹ãããã°æããŠãã ããã
å°æ¥ã®çµæžæ¿çããã®å¹æãæ°åŒãäºæž¬ããŒã¿ã§è©äŸ¡ããããã«ã¯ãããã€ãã®åææ¡ä»¶ãšã·ããªãªåæãå¿ èŠã§ããããã§ã¯ãç³ç Žèæ°ç·è£ã®çµæžæ¿çãè³äžãä¿é²ãåŽååžå Žæ¹é©ã財æ¿å¥å šåãéèæ¿çã®æ£åžžåãå°æ¹åµçãªã©ã«çŠç¹ãåœãŠãŠããããšãåæã«ããŠããããã®èŠçŽ ãçµæžæé·ã財æ¿åæ¯ã«ã©ã®ããã«åœ±é¿ããããäºæž¬ã¢ãã«ãç«ãŠãŠãããŸãã
1. çµæžæé·çã®äºæž¬ã¢ãã«
ãŸããGDPæé·çã®äºæž¬ãè¡ãããã«ãç³ç Žæ°ã®æ¿çã«ãã£ãŠåŽååžå Žãæè³ãæ¶è²»ãã©ã®ããã«å€åããããèæ ®ããŸãã以äžã®åºæ¬çãªçµæžæé·ã¢ãã«ã䜿ããŸãã
å°æ¥ã®çµæžæ¿çããã®å¹æãæ°åŒãäºæž¬ããŒã¿ã§è©äŸ¡ããããã«ã¯ãããã€ãã®åææ¡ä»¶ãšã·ããªãªåæãå¿ èŠã§ããããã§ã¯ãç³ç Žèæ°ç·è£ã®çµæžæ¿çãè³äžãä¿é²ãåŽååžå Žæ¹é©ã財æ¿å¥å šåãéèæ¿çã®æ£åžžåãå°æ¹åµçãªã©ã«çŠç¹ãåœãŠãŠããããšãåæã«ããŠããããã®èŠçŽ ãçµæžæé·ã財æ¿åæ¯ã«ã©ã®ããã«åœ±é¿ããããäºæž¬ã¢ãã«ãç«ãŠãŠãããŸãã
1. çµæžæé·çã®äºæž¬ã¢ãã«
ãŸããGDPæé·çã®äºæž¬ãè¡ãããã«ãç³ç Žæ°ã®æ¿çã«ãã£ãŠåŽååžå Žãæè³ãæ¶è²»ãã©ã®ããã«å€åããããèæ ®ããŸãã以äžã®åºæ¬çãªçµæžæé·ã¢ãã«ã䜿ããŸãã
Cobb-Douglas çç£é¢æ°
Y=Aâ Kαâ LβY = A \cdot K^{\alpha} \cdot L^{\beta}Y=Aâ Kαâ Lβ
YYY: GDPïŒçµæžæé·çã«é¢é£ïŒ
AAA: æè¡é²æ©ïŒæ¿çã«ããçç£æ§åäžïŒ
KKK: è³æ¬ïŒæè³ã®å¢å ïŒ
LLL: åŽååïŒåŽååžå Žæ¹é©ã«ããåŽååå çã®å€åïŒ
α\alphaα, β\betaβ: è³æ¬ãšåŽåã®åŒŸæ§ïŒéåžž α=0.3\alpha = 0.3α=0.3, β=0.7\beta = 0.7β=0.7 ãšèšå®ïŒ
æ¿çã«ãã£ãŠè³äžããä¿é²ãããã°ãåŽååžå Žã«ãããåå çïŒLïŒãäžæããããã«å°æ¹åµçã«ããå°æ¹ã§ã®åŽååã®æŽ»çšãé²ããšä»®å®ããŸãããŸããæè¡é©æ°ãå°æ¹ãžã®æè³ä¿é²ã«ãã£ãŠè³æ¬ïŒKïŒã®å¢å ãæåŸ ãããŸãã
äŸãã°ãæè¡é²æ©ãæ¯å¹Ž1%ãã€åäžããæè³ã2%å¢å ãåŽååã1.5%å¢å ãããšä»®å®ããå ŽåãGDPæé·çã®å€åã¯æ¬¡ã®ããã«ãªããŸãã
äºæž¬ã·ããªãª
åæGDPïŒYâïŒ: 500å åïŒæ¥æ¬ã®2023幎ã®åç®GDPã®åèå€ïŒ
æè¡é²æ© (AAA): 幎é1%
è³æ¬ã®æé·ç (KKK): 幎é2%
åŽååã®æé·ç (LLL): 幎é1.5%
å幎床ã®æé·çã¯ä»¥äžã®ããã«èšç®ãããŸãã Y1=A1â K1αâ L1βY_1 = A_1 \cdot K_1^{\alpha} \cdot L_1^{\beta}Y1 =A1 â K1α â L1β
仮㫠α=0.3\alpha = 0.3α=0.3, β=0.7\beta = 0.7β=0.7 ãšãããšãæé·çã¯æ¬¡ã®éãã§ãã
Y1=(1.01)â (1.02)0.3â (1.015)0.7â1.018Y_1 = (1.01) \cdot (1.02)^{0.3} \cdot (1.015)^{0.7} \approx 1.018Y1 =(1.01)â (1.02)0.3â (1.015)0.7â1.018
ã€ãŸããGDPã¯1.8%ã®æé·ãäºæ³ãããŸãã
ãã®å ŽåãGDPã¯æ¬¡ã®éãã§ãã
Y1=500â 1.018=509å åY_1 = 500 \cdot 1.018 = 509 å åY1 =500â 1.018=509å å
2幎ç®ä»¥éãåæ§ã®æé·çãé©çšãããšãå°æ¥çãªGDPã¯æ¬¡ã®ããã«æšç§»ããŸãã
2幎ç®: 509Ã1.018â518.2509 \times 1.018 \approx 518.2509Ã1.018â518.2 å å
3幎ç®: 518.2Ã1.018â527.5518.2 \times 1.018 \approx 527.5518.2Ã1.018â527.5 å å
5幎åŸ: çŽ550å å
2. 財æ¿åæ¯ã®äºæž¬ã¢ãã«
次ã«ã財æ¿å¥å šåã®ããã®è²¡æ¿åæ¯æ¹åãæ€èšããŸããæ¿åºã財æ¿å¥å šåãç®æãéã«ãçšåã®å¢å ïŒè³äžããæ³äººçšå¢å ã«ããïŒãšæ¯åºã®åæžãéèŠãªèŠçŽ ã§ãã
財æ¿èµ€åã®å€å
財æ¿èµ€åã®å°æ¥æšèšã¯ã以äžã®ããã«èšç®ã§ããŸãã
財æ¿èµ€åç=æ¿åºæ¯åºâæ¿åºåå ¥GDP財æ¿èµ€åç = \frac{ æ¿åºæ¯åº - æ¿åºåå ¥ }{ GDP }財æ¿èµ€åç=GDPæ¿åºæ¯åºâæ¿åºåå ¥
æ¿åºåå ¥ã¯äž»ã«çšåã§ãããçšåã®å¢å ã¯GDPæé·çã«é£åããŸããäŸãã°ãçŸåšã®è²¡æ¿èµ€åã GDP ã®3%ã§ãããšä»®å®ããè³äžãã«ããå人æåŸçšã®å¢å ãæ³äººçšå¢åãæ¯å¹Ž1%è¿œå ããããšä»®å®ããŸãã
ãŸããçšåå¢å ãšæ¯åºåæžã«ããã財æ¿èµ€åã®æžå°ãäºæž¬ã§ããŸãã
çŸåšã®è²¡æ¿èµ€å: GDPã®3%ïŒ15å åïŒ
æ¿çåŸã®çšåå¢å : 幎é1.5%
5幎åŸã«ã¯è²¡æ¿èµ€åã¯çŽ1.5%ã«æžå°ãããšäºæž¬
3. ã€ã³ãã¬çãšéèæ¿ç
éèæ¿çã®æ£åžžåãšããŠãæ¥éããŒãéå©æ¿çãéçç·©åãç·©åãããšãã€ã³ãã¬çãäžæããå¯èœæ§ããããŸããéåžžãã€ã³ãã¬çã®äºæž¬ã«ã¯ãã£ãªããã¹æ²ç·ã䜿çšããŸãã
ãã£ãªããã¹æ²ç·
Ït=Ïtâ1+γ(unâut)+ϵ\pi_t = \pi_{t-1} + \gamma (u_n - u_t) + \epsilonÏt =Ïtâ1 +γ(un âut )+ϵ
Ït\pi_tÏt : äºæž¬ã€ã³ãã¬ç
Ïtâ1\pi_{t-1}Ïtâ1 : å幎ã®ã€ã³ãã¬çïŒä»®ã«1%ïŒ
unu_nun : èªç¶å€±æ¥çïŒ4%ãšä»®å®ïŒ
utu_tut : çŸåšã®å€±æ¥çïŒ3%ãšä»®å®ïŒ
γ\gammaγ: ä¿æ°ïŒéåžž 0.5ïŒ
ϵ\epsilonϵ: ã·ã§ãã¯å€æ°ïŒ0 ãšä»®å®ïŒ
ãããšãã€ã³ãã¬çã¯æ¬¡ã®ããã«ãªããŸãã
Ït=1+0.5(4â3)=1.5\pi_t = 1 + 0.5 (4 - 3) = 1.5%Ït =1+0.5(4â3)=1.5
ã€ãŸããã€ã³ãã¬çã¯1.5%ã«äžæããå¯èœæ§ããããšäºæž¬ãããŸãã
ãŸãšã
GDPæé·ç: å幎床1.8%ã®æé·çã§ã5幎åŸã«çŽ550å åã®GDP
財æ¿èµ€å: çŸåšã®3%ãã1.5%ã«æžå°ïŒçšåå¢å ãšæ¯åºåæžã®çµæïŒ
ã€ã³ãã¬ç: ã€ã³ãã¬çã¯1.5%ã«äžæ
ãããã®äºæž¬ã¯ãç³ç Žèæ°ã®æ¿çãå®éã«
ã©ã®çšåºŠå¹æãçºæ®ãããã«äŸåããŸããã
æŠããã®ãããªã·ããªãªãèããããŸãã
ç¶ããŠãYOUTUBEãã§ãã
è³äžãã»ç©äŸ¡å¯Ÿçã¯âŠç³ç Žæ°ç·è£ã®çµæžæ¿çãâæ€èšŒâãBizã¹ã¯ãšã¢ã
TBS NEWS DIG Powered by JNN
@tbsnewsdig
ãã£ã³ãã«ç»é²è æ° 257äžäºº
5.9äž æ¬ã®åç»
235,261 åèŠèŽ 2024/09/28 #Bizã¹ã¯ãšã¢ #å®å æ¢šæ² #newsdig
äºå®äžã®æ¬¡ã®ç·çãéžã¶èªæ°å ç·è£éžã¯ã決éžæ祚ã§é«åžæ©èçµæžå®å šä¿éæ åœå€§è£ãç Žããç³ç Žèå å¹¹äºé·ãåå©ããŸããã
æ¥æ1æ¥ã«çºè¶³ããäºå®ã®ç³ç Žæ°æ¿æš©ã®çµæžæ¿çã®èª²é¡ãªã©ã«çŠç¹ãåœãŠãŸãã
ãVTRã²ã¹ãã
äžç©ºéº»å¥ïŒBNPããªãèšŒåž ã°ããŒãã«ããŒã±ããçµ±æ¬æ¬éšå¯äŒé·/çµæžè²¡æ¿è«®åäŒè°ã®æ°éè°å¡ïŒ
ãã³ã¡ã³ããŒã¿ãŒã
çœäºãããïŒæ ¶æçŸ©å¡Ÿå€§åŠ ç·åæ¿çåŠéšææïŒ
â ãBizã¹ã¯ãšã¢ãâ
BS-TBS æ¯é±åææ¥ åå11æãã
æ¯éã芧ãã ããã
#Bizã¹ã¯ãšã¢ #ææ©å士 #å®å æ¢šæ² #ãã¥ãŒã¹
âŒTBS NEWS DIG å ¬åŒãµã€ããhttps://newsdig.tbs.co.jp/
âŒãã£ã³ãã«ç»é²ããé¡ãããŸãïŒ
/ @tbsnewsdig
âŒæ å ±æäŸã¯ãã¡ããããTBSã€ã³ãµã€ããŒãºã
https://www.tbs.co.jp/news_sp/tbs-ins...
âŒæ åæäŸã¯ãã¡ããããTBSã¹ã¯ãŒãæçš¿ã
https://www.tbs.co.jp/news_sp/toukou....
#ãã¥ãŒã¹ #news #TBS #newsdig
0ã³ã¡ã³ã